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The principle of mathematical induction has been used for about 350 
years. It was familiar to Fermat, in a disguised form, and the first clear 
statement seems to have been made by Pascal in proving results about the 
arrangement of numbers now known as Pascal's Triangle. There are many 
applications of inductive arguments and the aim of my talk is to give some 
examples, illustrating why this method has become an indispensable tool 
for mathematicians. 

We begin with a general form of the principle. Let PI , p2 , p3 , ••• be 
statements or propositions, each of which may be true or false. 

Principle : 

Suppose that (i) PI is true and that, for n 2: 1, (ii) Pn ==> Pn+ I, then 
P1 , P2, Ps, ... are all true. 

Perhaps the most familiar applications are concerned with proving 
statements like the following. 

Example 1: 
1 

1 + 2 + ... + n = 2n(n + 1). Pn 

Proof. 
1 

1 = 2.1.2 is true. PI 

Now assume that Pn is true for some n 2: 1. Then we have 

1 
1 + 2 + ... + n + (n + 1) = -n(n + 1) + (n + 1) . 2 

1 
= -(n + 1)(n + 2). 

2 

Lecture given to the Society on 9 March 1988. 
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In other words, 

A slightly harder exercise is to prove that 

(1) 

2. Historical Background 

The historical material in this section is based on the book by Boyer 
[2]. It is remarkable that Fermat published hardly anything on the theory 
of numbers, but he made some very penetrating notes in the margin of 
his copy of a 1621 edition of the Arithmetica of Diophantus. Some of his 
theorems were proved by a method that he called infinite descent and he 
used it with great ingenuity. However, we can illustrate the method quite 
easily by proving a classical result. 

Example 2: J2 is irrational. 

Proof. We start with an assumption tha~ 

where k1 and k2 are positive integers. This will lead to a contradiction 
which shows that there is no such ratio. 

The assumption means that 

k~ = 2k~' 

so k1 is even and k1 > k2 • Now write k1 :;:::: 2k3 , so that k~ = 2k; and we 
have 

V2 = ::-

By repeating the argument, we can obtain an equation 

. In kn 
y~ = -k--, 

n+l 
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for every n ~ 1, where k1 , k2 , ••• are positive integers and k1 > k2 > .... 
This infinite descent gives the required contradiction. 

Figure 1 
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Figures 1 and 2 give two different sketches of what is misleadingly 
called Pascal's Triangle. The first is a Chinese version copied from a 
diagram that appeared in the Ssu-yii.an yii.-chien (Precious Mirror of the 
Four Elements) by Chu Shih-chieh in 1303. Chu disclaims credit for the 
triangle and it seems likely that it originated in China about 1100. Note 
the use of rod numerals and the zero symbol in Figure 1: see the recent 
Presidential Address [3] by Lam Lay Yong. It is worth remarking that 
formulae for the summation of series, such as (1), also appeared without 
proof in the Precious Mirror. 

Of course, both figures represent the same mathematical object. The 
reason that the triangle is associated with Pascal is that, in 1654, he gave a 
clear explanation of the method of induction and used it to prove some new 
results about the triangle. In fact, the construction of this infinite triangle 
is recursive so, with hindsight, the· method now seems very natural. Let 
the symbol (;) represent the rth number in the n-th row of the triangle, 
r = 0, 1, 2, ... , n. It is convenient to give the label 0 to the first row, so 
that 

(~) (~) (~) = 1. 

Then the triangle is constructed by using the relation 

(2) 

In other words, each entry is obtained by adding together the pair 
of numbers immediately above it in the previous row. We are using the 
relation (2) to define the symbols (;) here. However, it is easy to recover 
the usual formula. 

Example 3: (n) n! 
r - r!(n- r)! · 

Proof. In this case, let us take Pn in the Principle of Induction to 
include all the above equations associated wi-th the integer n, for r = 
0, 1, 2, ... , n. We have already noted that p0 and p1 are both true, so 
now consider a component of the proposition Pn+ 1 , assuming that Pn is 

'i true. By using (2) and Pn, we obtain 
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(
n+ 1) 
r+1 

n! n! 
= +---------------

r!(n- r)! (r + 1)!(n- r- 1)! 
n! 

( )'( _ )' (r + 1 + n- r) r+1.n r. 

(n + 1)! 
(r + 1)!(n + 1- (r + 1))!' 

Similarly, it is a straightforward matter to verify that 

(3) 

My final remark on the historical background of the method is to 
note that the Principle was included in 1889 as one of Peano's axioms for 
the natural numbers, thereby recognising it as one of the foundations of 
arithmetic. 

3. A Diversion. 

Inductive arguments are not always straigh~forward and the following 
anecdote contains one that is plausible, but false. I came across it in a 
book of mathematical puzzles, where it was presented without suggesting 
that there was anything wrong. 

Example 4: The Executioner's Tale. 

Many years ago, one Friday, in court, a prisoner was convicted of a 
crime and sentenced to death. The executioner visited him in his cell and 
offered some hope of freedom. "As it happens", he said, "I am allowed 
some discretion in my work and I rather enjoy a gamble, occasionally. In 
your case, the execution is scheduled for next week and I have written 
the day : Monday, Tuesday, ... , or Saturday, on a paper sealed in this 
envelope. I will visit you here early on Monday and then on the following 
days, if necessary, and ask whether you know the day of your execution. 
If you answer correctly at your first attempt, then you can go free but, 
otherwise, I must do my job". 
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The following Monday when the executioner arrived to ask his ques
tion, the prisioner replied immediately, "Yes, it must be today." "What 
makes you say that ?" said the executioner and this was the prisoner's ar
gument. "Consider the situation on Saturday morning. If you arrive then, 
I shall be certain that is the appointed day, so it must be earlier. Now 
consider Friday. If you ask me then, I will be sure of the answer because 
we have eliminated Saturday. Having excluded the last two days, we can 
repeat the argument for Thursday, and so on. By proceeding backwards 
in time, we can eliminate the days until we are left with Monday as the 
only possibility". The prisoner seemed well pleased with his conclusion 
and, to be fair, the executioner did not betray any emotion as he handed 
over the envelope to be opened - it was Wednesday ! 

There are several confusing features in the above argument, more than 
enough to invalidate the conclusion. However, the idea of using induction 
backwards over time is a very useful one and this is the subject of our final 
illustration. 

4. Shortest Paths in a Network 

As a research student, I became involved in the application of induc
tive techniques to optimization problems, developing the ideas expounded 
in Bellman's book [1]. There are now many applications involving a wide 
range of mathematical models. Some indication of the growth in this field 
can be found in more recent books by Whittle [4]. 

Unfortunately, there is no time to do justice to modern developments 
and a single example will have to be enough. Consider the problem of 
finding a path between two vertices in a network so that the distance 
along the path is a minimum. Suppose the network consists of vertices 
1, 2, ... , t, where t is the target to be reached from vertex 1. Some, but 
not all pairs of vertices are directly linked by an edge and the distance dii 

between i and i is given for these pairs. For simplicity, let us assume that 
there is always a path between any two vertices; its length is obtained by 
adding the dii over the corresponding sequence. of edges. For any vertex 
i, the number of paths from i to t is finite. Let fi be the length of the 
shortest path. Thus, ft = 0 and it is easy to see that, for i < t, 

(4) 
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The minimisation on the right of this equation is equivalent to choos
ing a direction of departure from i : the index ;· runs over all vertices 
directly linked to i by an edge. Suppose that all the given distances d1; 

are positive. Then it can be shown that the system of equations ( 4) has 
a unique solution for the shortest lengths / 1 , / 2 r ••• , ft- 1 , with ft = 0. 
If we can determine this solution, then it is easy to find a suitable path 
from 1 to t by following directions that attain the minimum in ( 4) at every 
vertex encountered on the way. The solution is constructed by backwards 
induction : more precisely, the values of the / 1 are determined in increasing 
order. This is best demonstrated by looking at a particular case. 

(I~) 

Figure 3 

Example 5: Vertices i = 1, 2, ... , 10 are shown in Figure 3 and each 
edge is marked with the distance d,,.. The length of the shortest path to 
t = 10 is shown as (/;) near the initial vertex. Note that the solution is 
constructed by working from right to left on the diagram : 

t = 10 9 7 8 5 4 3 2 1 6 
f, = 0 2 4 5 7 11 12 13 14 16 
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Finally, we note that the required path from 1 to 10 is determined by 
following the arrows : 

1 ~3 ~ 5 ~4 ~9~ 10 

and this attains the value 

/1 = 2 + 5 + 3 + 2 + 2 = 14. 
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